Since 2009, resource management agencies throughout much of the United States have required biologists to record a wing damage index (WDI) for bats captured. Interestingly, this requirement preceded publication of the technique (Reichard and Kunz, 2009), which (when published) advocated WDI as an “important tool for assessing the spread of [white-nose syndrome, or WNS] and for establishing baseline data for unaffected bats.” This statement immediately found a willing audience among regulatory biologists who saw WDI scores as a potential, easy proxy for monitoring the extent of WNS across broad geographic regions. In summer 2009, we surveyed bats at 459 sites in New York, Pennsylvania, New Jersey, Virginia, and Maryland and, as required, collected WDI scores for each bat captured (Francl et al., 2011). Like many biologists, we expected to document numerous bats with severely necrotic wings. Only 4 of 3,419 bats had severe (WDI=3) and 47 had moderate (WDI=2) damage. Taken alone, this result indicates that either WDI did not provide the easy assessment of the occurrence and severity of WNS across the landscape for which the regulatory community had hoped or that the majority of bats we captured were healthy.

In an effort to further understand the value of the WDI, we attempted to correlate WDI with body mass index (BMI), a surrogate for health in bats, and with distance from infected hibernacula. In their response, Reichard et al. (2011) correctly questioned whether we failed to find a relationship between BMI and WDI scores because our sample included bats of multiple species and bats that were heavier due to full stomachs or pregnancy. The effect of a full stomach or pregnancy might be addressed with larger sample sizes, but our data set is the largest of which we are aware. Even when we accounted for these potential inter- and intraspecific biases, we found no apparent patterns between BMI and WDI. This is not surprising given that Reichard and Kunz (2009) only found such effects for bats with severe wing damage, which were extremely rare in our samples. This rarity perhaps is because these bats die or do not travel far from the roost. We did, however document higher WDI scores close to infected hibernacula.

To some extent, Francl et al. (2011) was obsolete before it was published. Much like Reichard and Kunz (2009), we made our results available to other biologists prior to publication. Partly in response to this effort, WDI is now used by resource agencies to identify bats that should be subjected to more invasive and expensive analyses such as genetic testing (Lorch et al., 2010) for the putative causal organism (Geomyces destructans) or histology to confirm infection (Meteyer et al., 2009). Our comments about utility of WDI only apply to its use as a proxy for studying large-scale incidence of WNS, and thus do not preclude its use in a more controlled setting or its value as part of a suite of measurements.

LITERATURE CITED

Submitted for publication 27 June 2011.
Accepted 1 July 2011.
Dear Author,

During the preparation of your manuscript for publication, the questions listed below have arisen. Please attend to these matters and return this form with your proof. Many thanks for your assistance.

<table>
<thead>
<tr>
<th>Query Reference</th>
<th>Query</th>
<th>Remarks</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>Author: This article has been lightly edited for grammar, style, and usage. Please compare it with your original document and make corrections on these pages. Please limit your corrections to substantive changes that affect meaning. If no change is required in response to a question, please write “OK as set” in the margin. Copy editor.</td>
<td></td>
</tr>
<tr>
<td>2</td>
<td>Editor: please provide page range for companion letter. Copy editor.</td>
<td></td>
</tr>
</tbody>
</table>